Imitation Learning for Generalizable Household
Manipulation

Bohan Yang, Nicole Li
by930@cornell.edu
y13558@cornell.edu

1 Introduction

We present SkilledRobot, a simulated robot capable of performing household manipulation tasks, by
learning from demonstrations from expert data. Our study investigates three imitation learning ap-
proaches: Behavior Cloning (BC) with a multilayer perceptron (MLP), DAgger, and a Transformer-
based BC model. The objective is to evaluate how well each method generalizes across variations
in initial states and visual observations under data constraint settings. We begin by training a stan-
dard Multimodal-MLP-BC using expert trajectories from the ManiSkill2 dataset [1]. To address the
issue of compounding errors, we then incorporate DAgger into our pipeline. Finally, we introduce
a Transformer-BC policy to leverage its capacity for modeling long-range dependencies and fus-
ing multimodal inputs through self attention and cross attention mechanisms. We benchmark these
methods on the PegInsertionSide-v0 and compare against its Baseline-BC. We hypothesize
that the Transformer-based BC model will outperform the baselines due to its ability to model long-
range dependencies in sequential decision-making, better fuse multimodal inputs, and generalize to
out-of-distribution states.

2 Problem Statement

We consider the standard imitation learning setting, where the dataset consists of expert demonstra-
tions in the form of state-action trajectories:

D= {Ti}fil, where each trajectory 7; = ((s1,a7), (s2,a3),...,(s7,ak))

Here, s; is the state at time step ¢, and a; is the corresponding expert action.

We aim to learn a deterministic policy 7y, parameterized by 6, that maps states to actions:

a=my(s), where s= (gpos,qvel,tcp,hand rghd, base rgbd), a € R®

The training objective is to minimize the expected loss over all trajectories in the dataset:

T
0* = arg minE-.p [Z L(mo(se), af)]

t=1

where L is typically chosen to be the mean squared error (MSE):
L(mg(se), af) = [lmo(se) — a|l3

The state s is a multimodal observation vector composed of proprioceptive data and two RGB-D
images. The action is an 8-dimensional vector.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

Table 1: State Observation Components

Component Description Shape

gpos Robot joint positions, including arm and gripper joints [9]

qvel Joint velocities for all 9 degrees of freedom [9]

tcp Tool Center Point pose, including 3D position and quaternion [7]
orientation

hand_rgbd RGB-D image from the wrist-mounted hand camera, capturing [4,128,128]
close-up views

base_rgbd RGB-D image from a static base-mounted camera, capturing [4,128,128]
global context

3 Approach

3.1 Simulation and Dataset

We use the ManiSkill2 simulation environment and select the PegInsertionSide-vO0 task as our
primary benchmark. Expert demonstration data is sourced from ManiSkill2’s HuggingFace datasets.
For all experiments below, we use 100 trajectories from their dataset and split the training and
validation data in a ratio of 8:2.

3.2 ManiSKkill Baseline Behavior Cloning

As a baseline for evaluating cross-task generalization, we conducted an experiment in which a
Baseline-BC model designed for a relatively simple PushCube-vO0 task was trained using the data
from PegInsertionSide-vO.

We took the base image RGBD and proprioceptive states, and was trained for 2000 iterations using
a batch size of 32. The architecture followed a standard two-tower setup, consisting of a CNN-based
visual encoder and an MLP-based state encoder, with latent fusion of features.

Proprioceptive State
(25-D)

RGBD Image PlainConv CNN + » MLP (2 layers] i
@ H"W) i v (2 layers) Action

Figure 1: Baseline-BC architecture

PushCube BC Training and Validation Loss

0.2 : : :
015 | —e— Training Loss | |
" : —m— Validation Loss
& 0.1 _
—
5-1072 | n
= ! ! ! ! ! ! ! !

| | |-
0 200 400 600 800 1,0001,2001,4001,6001,8002,000

Iteration

Figure 2: Loss curve of Baseline-BC tested on PegInsertionSide-vO0.

3.3 Multimodal Behavior Cloning

We improve from the baseline. We built a Multimodal-MLP-BC. The policy learns from a multi-
modal observation space that includes both the hand image and the base image and proprioceptive
state data (joint positions, joint velocities, and the end-effector pose). The goal is to directly map
these observations to continuous action vectors provided by an expert demonstrator in the Man-
iSkill2 environment.

To prepare the data, the code defines a preprocessing function that first normalizes the RGB image
to the [0, 1] range and ensures the depth image is in the correct shape. The RGB and depth images
are concatenated along the channel dimension to form a single 4-channel image with shape (4, H,
W).

The model architecture consists of two major components: a vision encoder and a state encoder,
whose outputs are fused and decoded into an action prediction. The vision encoder uses a ResNet-
18 model, pretrained on ImageNet. We modified it to accept 4-channel input to accommodate the
RGBD data. Specifically, the original first convolutional layer is replaced to accept four input chan-
nels, copying the pretrained weights for the RGB channels and initializing the new depth channel
weights to zero. The classification head is removed, and the encoder outputs a 512-dimensional
feature vector after global average pooling.

In parallel, the proprioceptive state vector, composed of the concatenation of gqpos, qvel, and
tcp_pose, is passed through an MLP. This state encoder is composed of four fully connected layers
with ReLU activation functions, reducing the dimensionality to a 64-dimensional latent represen-
tation. The two feature vectors, 512 from the vision encoder and 64 from the state encoder, are
concatenated to form a 576-dimensional joint representation, which is then processed by another
MLP that serves as the action decoder. This final head predicts an 8-dimensional continuous action
vector.

State —>» MLP (4 layers)

Hand Camera —>» Modified ResNet MLP head (4 layerS)H Action 1

Base Camera —>» Modified ResNet

Figure 3: Multimodal-MLP-BC architecture

This architecture shows how vision and state information are encoded separately before being
merged. It effectively leverages pre-trained visual features from large-scale datasets while adapt-
ing to robotic control via learned proprioceptive embeddings.

Multimodal BC — Training and Validation Loss

1072
3 P T T T .
—— Train

w 21 —=— Validation | |
g

1 - |

0 | |

0 5 10 15 20
Epoch

Figure 4: Loss curves for the Multimodal-MLP-BC. Early stopping triggered after epoch 22 when
validation loss plateaued.

3.4 DAgger

To mitigate the distribution shift in Behavior Cloning, we explored the use of Dataset Aggregation
(DAgger). Traditional DAgger involves querying an expert to relabel actions along the agent’s own
rollout trajectories, which requires expert annotation tools such as teleoperation. However, due to
the lack of teleoperation equipment, we developed a modified DAgger approach. Instead of live
expert queries, we approximate expert actions by performing a nearest neighbor (NN) search based
on cosine similarity between the current observed state and states in a meta-dataset. This meta-
dataset consists of the full ManiSkill dataset, whereas our original BC model was trained on only a
subset.

The expert is simulated through NN search implemented in the FullRgbdBCDataset class, which
loads all demonstration episodes and provides a find nearest_action method. This method com-
putes the cosine similarity between a query observation—constructed by flattening RGBD images
and concatenating them with proprioceptive states (joint positions, velocities, and TCP pose)—and
every entry in the dataset. The action associated with the most similar stored sample is used as the
expert label.

A DAgger rollout is conducted by stepping through the environment using the current policy, and
queries the simulated expert (find_nearest_action) at each timestep to label visited states. These new
expert-labeled transitions are appended to the training set. We then retrain the model from scratch,
applying supervised learning using mean squared error (MSE) loss over multiple epochs.

Despite its effectiveness in approximating expert behavior, this modified DAgger approach has lim-
itations. The nearest neighbor search creates significant performance bottlenecks since cosine sim-
ilarity calculation at every environment step is compute intensive. Even with optimizations such as
batch similarity evaluation and matrix precomputation, the process remains too slow to finish within
acceptable timeframes.

Listing 1: Lecture DAgger Listing 2: Our DAgger implementation

Initialize random policy m Load BC checkpoint — m; (else random)
D+ () # empty buffer
expertDB < FullRgbdBCDataset (full_demo.h5)
for t=1,...,N do D < RgbdBCDataset (train_split.h5)

Roll out current policy Val <— RgbdBCDataset(val_split.h5)

Di = {(807 ao)7 (51,(11)7 N }
for 1 =1,...,5:

Query expert 7" on learner D+ 0
states for episode =1,...,5:
D; = {(s0,7*(s0)), (s1,7"(51)),... } s+ env.reset()
while — done:
Aggregate and retrain Qpred m(s)
D+~ DUD; a* < expertDB.find nearest_action(s)
mi+1 < Train(D) D; «+ D; U{(s,a")}

s,done < env.step(a”®)
Select best 7i1.n+1

D+ DuUD;
Ti+1 < Train(D, Val, epochs = 3)
save_if best(mit1,Val)

save(Tsina1, "dagger multimodal policy.pt")

Figure 5: Lecture DAgger vs. our nearest-neighbor adaptation.

3.5 Transformer-Based BC

We propose a Transformer-BC architecture that improves upon our original Multimodal-MLP-BC
policy by introducing a more expressive design that leverages attention over both RGBD visual in-
puts and robot positional state. This model is designed for the ManiSkill2 manipulation environment

and aims to enhance generalization and robustness by explicitly modeling temporal and multimodal
dependencies.

The policy receives RGBD observations from two wrist-mounted cameras (a hand camera and a
base camera). Each RGBD image is preprocessed into a 4-channel format (3 RGB + 1 normalized
depth) and resized to 224x224. We adapt a pretrained Vision Transformer (ViT-B/16) to accept
4-channel input by replacing the initial 3-channel projection layer with a 4-channel convolutional
layer, initializing the depth channel weights as the mean of the RGB weights. Each camera stream
is encoded independently via this modified ViT, producing a compact visual embedding.

In parallel, the robot’s proprioceptive state—composed of joint positions (¢pos), joint velocities (gyei),
and TCP pose—is embedded through a linear layer into a 64-dimensional vector. This vector passes
through a learnable positional encoding MLP, followed by a 2-layer Transformer encoder with multi-
head self-attention. This enables the model to capture internal dependencies among components of
the robot’s state.

The resulting visual features (from both cameras) and the encoded state embedding are concatenated
and fused via a 4-layer MLP head that outputs an 8-dimensional continuous action vector. This
multimodal fusion strategy allows the policy to condition its predictions jointly on visual scene
context and dynamic physical state.

Learnable PE MLP

)

| \

State G »Transformer Encoder
Camera Image . " .
pretii > Modified ViT-B/16 EB*)[MLP Head }—){ Action ’
J
N
Hand Image (RGBD) Modified ViT-B/16

J

Figure 6: Transformer-BC architecture

Transformer BC — Training and Validation Loss

1072
3 T T T T T T T T T T
—e— Train
—a— Validation
2 - |
[72]
[72]
5]
—
1 - |
0 | | | | | | | | | |

0 2 4 6 8 10 12 14 16 18
Epoch

Figure 7: Loss curves for the Transformer-BC. Early stopping was triggered after epoch 18.

4 [Experiments

When deployed in the PegInsertionSide-v0 environment, as can be seen in the rendered roll-
out, the Baseline-BC policy failed to perform meaningful behaviors. The arm movements were

not directed toward the insertion target, and the peg rarely made contact with the hole. This poor
performance highlights the task-specific nature of imitation learning and the brittleness of policies
when exposed to unfamiliar distributions.

This result underscores the difficulty of transferring learned behaviors across tasks with different
spatial and temporal requirements. It motivates the need for architectures that can better encode
generalizable skills—such as those incorporating Transformer-based attention over diverse observa-
tions—and supports our goal of developing a more robust imitation learning pipeline for complex
household tasks.

As shown in the loss curve (Figure 4), the Multimodal-MLP-BC model achieves significantly lower
training and validation loss compared to the baseline BC implementation, indicating more effective
learning. While the rendered policy execution reveals that the robot arm is now able to localize and
reach toward the peg, it still struggles with lifting it and fails to align the peg with the target hole for
successful insertion.

It can be seen from the loss plot (Figure 7) and rendered rollouts that the Transformer-BC model
achieves the best performance among all evaluated architectures. The final evaluation loss is the
lowest comparison among the three. During the experimental rollout, the robot arm successfully
picks up the peg and aims toward the hole.

The results from the evaluation and the experiments supported our hypothesis. The
Transformer-BC achieves the best result among the three: Baseline-BC, Multimodal-MLP-BC,
and Transformer-BC. The superior result likely is due to the Transformer’s attention mechanisms.
The use of Vision Transformer provides power visual encoders than plain CNN or RestNet. Fur-
thermore, the ability to effectively weigh and combine information from diverse sensor modalities
enables the policy to build a more robust representation to success in the PegInsertionSide-vO0
task.

Figure 8: Snapshots from three imitation learning policies on the PegInsertionSide-vO0 task. Top
row: Baseline-BC shows failure to grasp or insert. Middle row: Multimodal-MLP-BC improves
stability and control. Bottom row: Transformer-BC demonstrates precise and robust insertion
behavior.

5 Training

All model training are conducted on Google Colab system using either a T4 or A100 GPU. All
models are conducted on the same training and validation dataset. The batch size is 32. We used
Adam optimizer. Learning rate starts initially at 1e-4 and used a learning rate scheduler to decrease
the learning rate by half if the validation loss do not decrease by two epochs. We have an early
stopping mechanism to stop the training if the validation loss do not decrease in 5 epochs. The
lowest validation checkpoint is saved and used for experiments.

References

[1] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei, Y. Yao, X. Yuan, P. Xie,
Z. Huang, R. Chen, and H. Su. Maniskill2: A unified benchmark for generalizable manipulation
skills. In International Conference on Learning Representations, 2023.

	Introduction
	Problem Statement
	Approach
	Simulation and Dataset
	ManiSkill Baseline Behavior Cloning
	Multimodal Behavior Cloning
	DAgger
	Transformer-Based BC

	Experiments
	Training

